User's Manual

Multi-channel Series HT3542-12H, HT3542-24H

DC Resistance Meter

Content

Introduction	۱	1
Checking Pa	acking Contents	2
Safety Note	S	3
Chapter1	Overview	7
1.1 Intro	oduction	7
1.2 Cha	racteristics	8
1.3 Nan	ne and Operation Summary of Each Part	9
1.4 Dim	ension	13
1.5 Scre	en Composition	14
Chapter 2	Preparation before testing	16
2.1 Mea	surement Process Overview	16
2.2 Pre-	measurement Inspection	20
2.3 Con	firm the Measured Object	21
2.4 Con	nection method of test line	22
Chapter 3	Basic Settings	24
3.1 Sett	ing Test Range	24
3.2 Sett	ing Measurement Speed	25
3.3 Tem	perature Setting	
3.3.	1 Temperature Compensation	27
3.3.	2 Temperature Conversion	29
3.4 Ave	rage Number of Times Setting	
3.5 Mea	surement Delay Setting	
3.6 Auto	o Hold Settings	
3.7 Abn	ormal Mode Setting	
3.8 OV	C (thermoelectric compensation) Functior	າ Setting
		40

3.9 Display Digit Setting	42
3.10 Test Current Setting	43
3.11 Contact Detection Settings	45
3.12 Multi-channel Settings	46
Chapter 4 Comparator Settings	49
4.1 Comparator Function	49
4.1.1 Comparison Result Signal Output Method.	50
4.2 Comparison Mode	51
4.2.1 Absolute Value Mode	51
4.2.2 Percentage Mode	54
4.3 Multi-position Sorting Function	55
4.3.1 Sorting Function Turn on Settings	56
4.3.2 Sorting Function Range Setting	57
4.3.3 Sorting Function Upper and Lower Limit Se	ttinac
nois serting randton opper and zerter zinne se	ungs
A 2.4. Continue Function Other land Difference	57
4.3.4 Sorting Function Standard Difference	Value
4.3.4 Sorting Function Standard Difference Settings	57 Value
4.3.4 Sorting Function Standard Difference Settings 4.4 Multi-channel comparison settings	Value 58 59
 4.3.4 Sorting Function Standard Difference Settings 4.4 Multi-channel comparison settings Chapter 5 Measure	Value 57 Value 58 59 62
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 58 59 62 62
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 58 62 62 62
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 58 62 62 62 63 64
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 58 62 62 62 62 64 64
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 59 62 62 63 64 64 64 64
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 58 62 62 62 62 62 64 64 64 69 69
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 58 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 63 64 64 64 67
 4.3.4 Sorting Function Standard Difference Settings	Value 57 Value 58 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 63 64 64

Chapter 7	System Settings	72
7.1 Butto	on Sound Setting	72
7.2 Self-o	calibration Function	73
7.3 Powe	er Frequency Setting	74
7.4 Radio	o Mode Setting	75
7.5 Com	munication Mode	76
7.5.1	RS232	76
7.5.2	2 LAN Communication Protocol	78
7.6 USB i	interface	81
Chapter 8	EXT I/O for external control	81
8.1 Trigg	er Source Settings	82
8.2 Trigg	er Level Setting	83
8.3 Level	Mode Setting	84
8.3.1	NPN Wiring Method	85
8.3.2	PNP Wiring Method	86
8.4 EOC	Mode Setting	86
8.5 Outp	ut Mode Setting	88
8.6 Port	Signal Details	90
8.6.1	Port and Signal Description	91
8.6.2	Port Diagram	91
8.6.3	Port Signal Connection Method	93
8.6.4	Input Circuit Connection	94
8.6.5	Output circuit connection	95
8.7 Timir	ng Diagram	96
8.7.1	Timing diagram when triggered externally	96
8.8 Timir	ng Diagram External Control Confirmation	100
Chapter 9	Multi-channel test lines	102
9.1 Conf	iguration of connectors and terminals	102

9.2 Definition of multi-channel test lines		
9.3 Interna	al circuit composition	105
Chapter 10	Parameter	106
10.1 Gene	ral Parameters	106
10.2 Accur	acy	107

Introduction

Thank you for purchasing 3542 precision resistance meter. This manual aims to explain the operating steps, precautions and maintenance of the instrument. To obtain maximum performance from this product, please read this manual first before operation, and keep it safe for future reference.

Registered trademarks

Windows and Excel are registered trademarks of Microsoft Corporation in the United States or other countries.

Checking Packing Contents

When receiving instrument, please check carefully to ensure that the instrument is not damaged during transit. In addition, special inspections of accessories, panel switches and connectors are required. If the instrument is found to be damaged or it fails to operate as described in the user manual, please contact us.

To transport this instrument, use the original packaging and wrap it in a double carton. Damage during transit is not covered by the warranty.

Safety Notes

The instrument is designed to comply with the IEC 61010 safety standard and has been thoroughly tested for safety before shipment from the factory. However, if it is used improperly, it may cause injury or death and damage the instrument. Be sure to read through this manual and its precautions before use. Our company does not assume any responsibility for accidents and injuries caused by improper operation or other reasons.

This manual marks the relevant signs for safe operation of the instrument. In order to ensure the safety of the instrument and its users, please read the following safety signs and operating precautions carefully before use.

Safety Signs

The sign in this manual is particularly important and should be read carefully before using the machine. Users must refer to the corresponding topics in the manual before using the corresponding functions.

- **---** Stands for DC (Direct Current)
- Stands for fuse

Stands for ground terminal

Precautions for operation

Using Environment

- Operating temperature and humidity:
 0 to 40 ° C, below 80% RH (no condensation)
- Temperature and humidity range to ensure accuracy: -10-50°C, below 80% RH (no condensation)

• To avoid malfunction or damage to the instrument, do not place the tester in the following situations:

- > High temperature places with direct sunlight
- May splash onto high temperature liquids or places where condensation occurs.
- > Exposed to dusty places.
- > Places filled with corrosive or explosive gases
- Places with strong electromagnetic fields and radiation.
- > Places with frequent mechanical vibrations.

Checking before use

Before using this instrument, verify the operation is normal and there is no damage during storage or transportation. If you find any question, please contact us.

Before using the instrument, make sure that the			
AC power cord and test lines are well insulated			
and the conductor is not exposed. Otherwise,			
there may be a risk of electric shock during use.			
To ensure personnel safety, please contact our			
company in a timely manner to replace the			
equipment			

Handling Precautions

	Do not wet the instrument or operate with wet
	hands. Do not modify or disassemble it by
	yourself. Otherwise, it may cause fire, electric
	shock or other accidents.
	There are high pressure and high temperature pa
A	inside the instrument during operation, do r
	disassemble instrument casing to avoid elect
	shock.
	To avoid damage to the instrument, pay attenti
	to preventing physical impact or falling duri
	operation or handling.
	Be sure to turn the power off after using it.

Use of test lines

	To prevent electric shock accident, do not
	short-circuit the top of the test line and the line
	with voltage.
	When testing, for your safety, please use
	the instrument's own test line option.
	To avoid damaging test lines, do not bend or
	stretch the test lines.
CAUTION	To avoid damage to the test line, do not
	bend or stretch the test line, when inserting
	and unplugging test wires, hold the
	connector tightly.
	The probe at the front of the test line is sharp,
	taking care not to be scratched.

Accuracy

We use the f.s. (full range), rdg. (reading) and dgt. (resolution) values to define the measurement tolerances, which have the following meanings:

f.s. (Maximum display value or measurement range) The maximum displayed value or measurement

range is usually the currently selected range name.

rdg. (Reading or display value)

The current measured value and the value displayed on the instrument.

dgt. (Resolution)

The minimum display unit of a digital tester, that is, the input value that causes the digital display to show a "1" .

Chapter1 Overview

1.1 Introduction

The basic accuracy of HT3542 DC resistance tester is 0.01%, and the measurable range is $0.1\mu\Omega \sim 10M\Omega$. With high- speed testing line anomaly detection function and extremely short measurement cycle. The highest sorting speed is up to 1000 times/second, ensuring high-speed and reliable sorting every time. HT3542 can be freely configured for multi-stage sorting, and external control interface can be configured as NPN/PNP. It is suitable for various signal interfaces of automatic production line.

The precision resistance tester adopts a four terminal testing method to measure the winding resistance of motors and transformers, the contact resistance of relays and switches, the pattern resistance of printed circuit boards, and the DC resistance of various materials such as fuses, resistors, and conductive rubber at high speed and precision. Due to the temperature compensation function equipped with this instrument, it is most suitable for measuring objects whose resistance values change due to temperature. In addition, it is also equipped with comparator functions, communication, external control, etc., which can be used for various situations such as development and production lines.

The precision resistance multi-channel scanning tester requires testing of PCB vias and wiring in fields such as aerospace and automotive electronics, and can scan and switch at a speed of 2ms per channel.

1.2 Characteristics

□ Appearance

- 3.5-inch high-resolution TFT LCD display, easy to operate
- Compact and powerful

□ High technical specifications

- $20m\Omega \sim 10M\Omega$, 5.5 digits display, basic accuracy 0.01%
- The highest resolution is 0.1μΩ

Quick Measurement

Minimum test cycle only needs 2.2ms

□ Rich interface

- External control I/O port
- RS-232 interface
- Ethernet interface
- Temperature test interface

- □ Powered by
- 100~240V power supply
- Power frequency 50/60Hz

1.3 Name and Operation Summary of Each Part

Front Panel

Rear Panel

Side View

Bottom

Keys

Keys	Description	
F1	Function key F1	
F2	Function key F2	
F3	Function key F3	

F4	Function key F4
F5	Function key F5
ESC	Function Esc key
ENTER	Function confirmation key
	[Page Switch] Switches
	[Measurement Page] <->
PAGE	[Comparator Page]
PAGE	<-> [Setup Page] <-> [Panel
	Page] <-> [System Page]
	<-> [I/O Page]
СОМР	Comparator on/off button
	Lock key
	Short press [LOCK] key to lock
LOCK	the current page and the other
	keys get invalid. Long press to
	unlock.
	[0.ADJ] key
	Short press for clear zero function.
	Long press to release clear
	zero function

HOLD	[HOLD] key Hold the current measurement value during the test
TRG	[Trigger] key Single trigger test of the instrument in manual trigger mode
	[Direction] key Select menu items or set values

1.4 Dimension

1.5 Screen Composition

Measurement Display

MEAS CC Range 20mΩ	DMP SET PAN	INT EL SYS te <mark>SLOW2</mark>	1/0	
Range 20mQ Auto Range OFF Rate SLOW2 CONTACT TERM.A $1.00000m\Omega$				
Range ↑	Range↓ Auto Range	Speed	Temp	

Comparator Display

MEAS		ET PAN	EL SYS) i/o
BEEP OI	FF			
MODE A	BS			
RANG 20r	nΩ			
MULTI OFF	-			
UPPER 20.0	000mΩ			
LOWER 02.0	000mΩ			
OFF	PASS	FAIL	BEEP A	BEEP B

Measuring Parameter Setting Display

MEAS TC SET AVERAGE AUTO HOLD OVC DIGIT	COMP S OFF OFF OFF 6	DeltaT DeltaT DELAY ERR MODE MEAS CURF CONTACT C	EL SYS I/O OFF PRESET CurrErr R HIGE HK OFF
OFF	ON	SET	

Parameter Saving Display

System Parameter Setting Display

MEAS	СОМР	SET	PANEL	SYS	
KEY BEEP CALIB POW FREQ RADIO COM MODE BAUD RATE LANGUAGE	ON AUTO 50Hz OFF RS232 9600 ENGLISH				
OFF	ON	7			

I/O Setting Display

MEAS	COMP	SET)	PANEL	SYS	1/0
TRG SOURC TRG EDGE OUT MODE EOC MODE JUDGE MOI I/O TEST	E INT ON-OFF NPN HOLD DE JUDGE EXEC				
INT	EXT				

Chapter2 Preparation before testing

2.1 Measurement Process Overview

The instrument remains in the power off state, please prepare for testing according to the following steps.

1. Turn off the instrument and connect the test lines.

2. Plug AC power cord into the mains outlet

Ensure that the power cord is well grounded, which is conducive to the stability of the test.

3. Turn on the power at back of instrument.

At the time being, internal power of the instrument has been turned on and the instrument is in standby mode.

4. Press and hold POWER button on panel to turn on the power.

When instrument is in the standby mode, POWER button at panel light is red, long press POWER button, the power is turned on, the screen is lit, and light of button at panel turns green.

5. Setting test parameters

6.Start to test

7.Complete test, turn off the power

2.2 Pre-measurement Inspection

Before using the instrument, inspect it to verify that no damage has occurred during storage or transportation and it operates normally. If you find any damage, contact us.

Inspection item	Action
Is there any damage or a crack	If any damage is found, do
in the instrument? Are the	not use it. Return it for
internal circuits exposed?	repair.
Is there any dust or contamination, such as pieces of metal, on any terminals?	If dust or contamination is adhered to a terminal, clean the terminal with a swab.
Is the test line coating broken or is the metal exposed?	If the coating of a test line is broken, the measured value may become unstable or have an error. It is recommended to replace the intact wire.

Instrument and peripheral checking

Power-on checking

Inspection item	Action
After turn on the power on at	Return the instrument for
the back of the instrument,	repair, if the POWER
check whether instrument	button is not lit.
POWER button lit or not?	

When power is turned on, does	If the screen does not
the entire display turn on? the	behave like this, the
model name and measurement	instrument may be
screen are displayed normally?	damaged internally. Return
	it for repair.

2.3 Confirm the Measured Object

Please change the measurement conditions appropriately according to the object to be measured to reliably measure the resistance. Please refer to the recommended examples shown in the table below to start measurement after setting up instrument.

Maaguramant	R	Recommended setting				
Object	Test	тсилт		Contact		
Object	current	IC/∆I	UvC	detection		
Motors, solenoids,	High	тс				
chokes, transformers	підп		OFF	UN		
Signal contact						
harness, connector,	-	TC	-	OFF *3		
relay contact, switch						
Power contact						
harness, connector,	High	тс	ON			
relay	пign	ic i		ON		
contact, switch						
Fuse, resistor	Low *1	-	ON	ON		
Conductive	High	_	OFF	OFF		
coating,	riigii			OFF		

conductive rubber				
Other, common				
resistance				
measurement	High	*2	ON	ON
heaters, wires,				
welded parts				
Temperature rise				
test motor, choke,	High	ΔT	OFF	ON
transformer				

*1 When the rated power has a margin, select High

*2 When the temperature dependence of the measured object is large, use temperature compensation

*3 When there is margin for applying voltage, select ON

2.4 Connection method of test line

•	The test lines	port is	sharp,	taking	care i	not to
	be scratched.					

- For safety reasons, test leads supplied with the instrument should be used.
- To avoid electric shock, make sure the test leads are properly connected.

Front panel connection

WARNING

Test lines connection

1. 9344 Test clip type test line

2. 9363-B Test probe type test line

Chapter 3 Basic Settings

3.1 Setting Test Range

The range setting is divided into manual range and auto range. When auto range is selected, the instrument automatically selects an appropriate range to test based on the value of the measured resistance.

3.1.1 Manual Range Setting

Under measurement state, press [F1] or [F2] to switch the range. Even if auto range function is turned on, manual range switching is also valid (when the auto range is turned on, auto range function will be automatically turned off when the range is manually switched).

Under measurement state, press [F3] to switch to auto range.

Note:

- If the range is changed while the auto range is ON, the auto range is automatically canceled and is changed to manual range.
- If the comparator function is set to ON, the range is fixed and cannot be changed (it cannot be switched to auto range). To change the range, set the comparator function to OFF or change the range in the comparator settings.
- The auto range may become unstable due to the measured object. In this case, manually specify the range or extend the delay time.

3.2 Setting Measurement Speed

The measurement speed is divided into four levels: fast, medium, slow 1, and slow 2. Press [F4] to switch. The test accuracy of medium speed, slow speed 1 and slow speed 2 is higher than fast speed and is not easily affected by the external environment. When it is susceptible to the external environment, please fully shield the test object from the test lines and wrap the cable.

MEAS	COMP S	O OFF R	INT EL SYS ATE <mark>SLOW2</mark>	1/0
CONTACT TERM.A	1.0	000	0mΩ	
RANG 1	RANG ↓	AUTO	RATE	TEMP
			F4	

Note:

• When the measurement delay is set, the sampling period becomes slower.

• Test time includes ADC sampling, sorting output, and display time.

• In the test environment, when the electric field interference is relatively large, or when the test is difficult to stabilize, a slow test is recommended.

Perform a self-calibration of approximately 5ms between measurements. To shorten the measurement interval. set the

3.3 Temperature Setting

Press [F5] on measurement page to switch whether the current

temperature is displayed.

MEAS		ET PAN	INT EL SYS][I/o
RANG 20m	Ω Αυτ	O OFF R	ATE <mark>SLOW2</mark>	25.0°C
CONTACT TERM.A	1.0	000	0mΩ	2
RANG 1	RANG ↓	AUTO	RATE	TEMP
				F5

If temperature probe is not connected, temperature measurement is not possible. When the TC or Δ T is not used, there is no need to connect a temperature probe. If users do not want to display the temperature, please switch the display.

3.3.1 Temperature Compensation

Resistance value is converted to reference temperature for display. When need compensating for temperature, please connect the temperature probe to the TC terminal on the rear panel of the instrument.

1. Select parameter setting page

Press [PAGE]Button to select Parameter setting page

2. Select related menu items

Press [F2] to turn on temperature compensation. After the temperature compensation is set to ON, users need to press

[F3] to set the reference temperature and temperature coefficient.

3. Related values setting

Press [F3] to enter reference temperature and temperature coefficient setting page, press [F1] to enter setting, use left and right cursor keys to move the cursor to the position to be set, and use the up and down cursor keys to change value.

The principle of temperature compensation is as follows:

- Rt : Actual resistance value
- Rt0 : compensation resistance value
- t: Measuring temperature
- to: Reference temperature (setting range from -10°C~99.9°C)
- **α**t0: Temperature coefficient at t0 of the material being tested (setting range from -9999ppm/°C~9999ppm/°C)

Note:

When "t.error" is displayed, it indicates that the temperature probe is not connected; if temperature is displayed as ---.-, please confirm connection of the temperature probe.

3.3.2 Temperature Conversion

When performing temperature conversion, connect temperature probe to TC terminal on rear panel of the instrument. The temperature rise value can be converted according to the principle of temperature conversion, and the temperature at time of energization stop can be estimated.

1. Select parameter setting page

2 . Select related menu items

Press [F2] to turn on temperature conversion. After temperature conversion is set to ON, users need to press [F3] to set relevant value.

			INT	
MEAS	SET CO	OMP PANEL	SYS	I/O
TC SET	OFF	DeltaT	ON	
AVERAGE	OFF	DELAY	PRESET	
AUTO HOLD	OFF	ERR MODE	CurrErr	
OVC	OFF	MEAS CURR	HIGH	
DIGIT	6	CONTACT CHK	ON	
Multi	OFF	TWO-FOUR	4W	
SCAN	Αυτο	FAIL STOP	OFF	
AUDIBLE	FAIL			
OFF	ON	SET		
F1	F2	F3		

3. Related values setting

Press [F3] to enter setting page of initial resistance value
R1, initial temperature T1, and inverse of the temperature coefficient (K) at 0 $^{\circ}$ C.

MEAS	SET]	COMP PANE	L (SYS)	1/0
TC SET	OFF	DeltaT	ON	
AVERAGE	OF R1	+00.0000mΩ	PRESET	
AUTO HOLD	OF T1		CurrErr	
OVC	OF	+00.0 C	HIGH	
DIGIT	6 k	+000.0	OFF	
Multi	OFF	IWO-FOOR	4W	
SCAN	AUTO	FAIL STOP	OFF	
AUDIBLE	FAIL			
INPUT				
F1				

Press [F1] input key to start setting, use left and right cursor keys to move cursor to the position to be set, and use up and down cursor keys to change the value.

Setting range:

Initial resistance : $0.001\Omega \sim 9000.000 \text{ M}\Omega$ Initial temperature : $-10.0 \sim 99.9 ^{\circ}C$ **Reference value of k:** The following values are recommended in the JIS C4034-1 standard.

- Copper: k =235
- Aluminum: k =225

Temperature conversion test example:

- ① Make motor and coil fully adapt to room temperature, then measure resistance value (R1) and ambient temperature (t1) before power-on and input value into the instrument.
- ② Remove the test lines from the object under test.
- ③ After power is turned OFF, connect test leads to the object to be measured again, and measure the temperature rise value (∆t1 ~ △tn) at regular intervals.
- (4) Connect collected temperature data (\triangle t1 to \triangle tn) and estimate maximum temperature rise value (\triangle t).

Note:

- When Δ T is ON, comparator cannot be set to ON.
- If TC and multi-sorting functions are set to
- ON, Δ T will automatically turn into OFF status.

Average method	1 st	2 nd	3rd
Free measurement (moving average)	(D1+D2)/2	(D2+D3)/2	(D3+D4)/2
Non free measurement (simple average)	(D1+D2)/2	(D3+D4)/2	(D5+D6)/2

3.4 Average Number of Times Setting

Average multiple measurement values and display them. By using this function, the jumping of measured values can be reduced while also suppressing interference.

When triggered internally, (free measurement) is calculated through moving average.

When triggered externally, (non-free measurement) is a simple average.

Average number of times:

```
\mathsf{OFF} \leftrightarrow \mathsf{2} \leftrightarrow \mathsf{3} \leftrightarrow \mathsf{4} \leftrightarrow \mathsf{5} \leftrightarrow \mathsf{6} \leftrightarrow \mathsf{7} \leftrightarrow \mathsf{8} \leftrightarrow \mathsf{9} \leftrightarrow \mathsf{10}
```

Set the average number of times to the average value of 2:

When the low current resistance measurement is ON and the testing speed is slow 2, even if the average function is set to OFF, the internal average processing is performed twice. When the average function is set to ON, the average processing is performed according to the set number of times.

1. Select parameter setting page

MEAS	SET	СОМР	PANEL	SYS		
		001111		0.0	, vo 1	

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

Press the [F2] key to increase the average number of times, while press the [F3] key to decrease the average number of times. The maximum average number of times is 10, and the minimum is 2.

3.5 Measurement Delay Setting

Set the waiting time and adjust the measurement stability time after the OVC (thermoelectric potential compensation function) is turned on and the measurement current is changed in the automatic range. By using this feature. Even if the reactance component of the tested object is large, the measurement can start after the internal circuit stabilizes. The preset settings vary depending on the range or deviation voltage compensation function. Delay settings can be selected from two types: preset (internal fixed value) and any set value.

(1) The preset (internal fixed value) values may vary depending on the range or OVC function.

Range	Test current	Delay(un	it: ms)
· · ·····g·		OVC: OFF	OVC: ON
20 mΩ	-	75	25
200 mO	High	250	25
200 11132	Low	20	2
2000 mO	High	50	2
2000 11122	Low	5	2
20.0	High	20	2
20 12	Low	5	2
200.0	High	170	2
200 32	Low	20	2
2000 Ω	-	170	2
20 kΩ	-	180	-
200 kΩ	_	95	_
2000 kΩ	-	10	_
10 MΩ	-	1	-

(2) Any setting value

Set the range to 0 \sim 9999 ms, which is the value set for all ranges.

1. Select parameter settings page

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

3. Press the [F2] key to input the delay time

Approximate calculation criteria for the delay time of inductive loads

• When the measurement current is applied to the inductive load and it takes some time to stabilize, and cannot be measured in the initial state (preset), please adjust the delay.

Please set the delay time approximately 10 times the calculated value as the standard, ensuring that the reactance components (inductance, capacitance) do not affect the measured value.

$$t = -\frac{L}{R} \ln\left(1 - \frac{IR}{V_{o}}\right)$$

- L: Inductance of the tested object
- R : Resistance of the tested object+ wire resistance+ contact resistance
- I: Measuring current
- Vo : Open circuit voltage
- Initially, please set the delay time to be longer, then gradually shorten the delay time while observing the measured values.
- If the delay time is extended, the display update of the measured values will slow down.

3.6 Auto Hold Settings

It is very convenient to use the hold function when confirming measurement values. When the measured value is stable, the buzzer will sound and automatically maintain it.

1. Select parameter setting page

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

			INT	
MEAS	SET	COMP PANEL	SYS (1/0
TC SET	OFF	DeltaT	OFF	
AVERAGE	OFF	DELAY	PRESET	
AUTO HOLD	OFF	ERR MODE	CurrErr	
OVC	OFF	MEAS CURR	HIGH	
DIGIT	6	CONTACT CHK	ON	
Multi	OFF	TWO-FOUR	4W	
SCAN	AUTO	FAIL STOP	OFF	
AUDIBLE	FAIL			
OFF	ON			
F1	F2			

aÔd

Press the up, down, left, and right keys to select the parameters to be set

About Auto Hold Release:

Moving the test line away from the tested object and making it contact the tested object again will automatically release the hold. Changing the range and measurement speed or pressing [ESC] can also release the hold. If the hold is released, the HOLD indicator light will turn off.

3.7 Abnormal Mode Setting

The abnormal mode can be set to [current abnormal] and [over range]

1. Select parameter setting page

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

			INT	
MEAS	SET C	OMP PANEL	SYS	1/0
TC SET AVERAGE AUTO HOLD OVC DIGIT Multi SCAN AUDIBLE	OFF OFF OFF 6 OFF AUTO FAIL	DeltaT DELAY ERR MODE MEAS CURR CONTACT CHK TWO-FOUR FAIL STOP	OFF 0000ms CurrErr HIGH ON 4W OFF	
CurrErr	OverRng			

d⊖D

Press the up, down, left, and right keys to select the parameters to be set

Example of over range detection:

Overflow Detection	Measurement Example
When overrange	Measure 23 k Ω at a range of 20 k Ω
When the deviation display of the measured value (% display) exceeds the display range (999.999%)	500 Ω (+2400%) measured at a standard value of 20 Ω
When the result of clear zero operation is out of the display range	0.5 Ω zero adjustment in 1 Ω range → 0.1 Ω measurement → operation result -0.4 Ω, out of display range
When the input of the A/D converter is out of range during measurement	High-resistance measurement, etc. in environments with high external noise
When the current does not flow to the measured object normally (only when the current abnormal mode is set to over range output)	When the tested object has an open circuit and poor contact with the source-A terminal or source-B terminal, if the current abnormality is displayed as "", please set the current abnormality mode to "current abnormality"

Example of abnormal current:

• Place the SOURCE A and SOURCE B probes in an open circuit state

• Tested object disconnection, etc. (open circuit components)

- Broken wiring and poor connection in SOURCE A and SOURCE B wiring

Attention:

• If the resistance of the SOURCE wiring exceeds the following values, a current anomaly will occur, making it impossible to measure. Under the measurement current range of 1 A, please control the contact resistance between the wiring resistance and the tested object as well as the test wire to a lower level.

3.8 OVC (thermoelectric compensation) Function

Setting

Automatically compensate for thermal potential or bias voltage within this instrument. (OVC : Offset Voltage Compensation)

1. Select parameter setting page

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

				INT	OVC
MEAS	SET	COMP	PANEL	SYS	1/0
TC SET AVERAGE AUTO HOLD OVC DIGIT Multi SCAN AUDIBLE	OFF OFF ON 6 OFF AUTO FAIL	Delt DEL ERR MEA CON TWO FAIL	AY MODE AS CURR ITACT CH D-FOUR . STOP	OFF 0000ms CurrErr HIGH K ON 4W OFF	
OFF	ON				
F1	F2				

Press the up, down, left, and right keys to select the parameters to be set

After the OVC function is turned on, the upper right corner of the interface will display OVC

Based on the measured value RP when flowing the measured current and the measured value RZ when not flowing the measured current, display RP-RZ as the true resistance value.

VEMF: Thermoelectric potential, potential is generated when any metal comes into contact, and the magnitude of the potential is related to temperature.

Rx: Measured resistance

When the injection test current is IM, $V1 = V_{EMF} + R_X * I_M$

When IM=0, $V2 = V_{EMF}$, V = V1 - V2 = Rx*IM

By performing simple subtraction operations, the influence of thermoelectric potential can be eliminated.

Attention:

- When the bias voltage compensation function is ON (OVC indicator light is on), the display update of measured values will slow down.
- When measuring low current resistance as OFF, the bias voltage compensation function can be set to ON in the range of 20 m Ω to 2000 Ω , and there is no OVC function in the range of 20k Ω to 10M Ω .
- When the bias voltage compensation function has been changed, the zero-adjustment function will be relieved.
- When the inductance of the tested object is large, the delay time needs to be adjusted. (Initially, please set the delay time to be longer, and then gradually shorten it while observing the measured values.)
- When the Heat capacity of the tested object is small, the effect of the bias voltage compensation function may not be seen.
- When the low current resistance measurement is ON, the bias voltage compensation function automatically changes to the ON state in all ranges, and this function

3.9 Display Digit Setting

1. Select parameter setting page

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

Press the up, down, left, and right keys to select the parameters to be set

[F1] Key: 6 bits (1,000,00dgt.) (initial setting)

[F2] Key: 5 bits (100,00dgt.)

3.10 Test Current Setting

1. Select parameter setting page

Press [PAGE] Button to select Parameter setting page

2. Select relevant menu items

				INT		
MEAS	SET	сомр	PANEL	SYS	$\left[\right]$	I/O
TC SET AVERAGE AUTO HOLD OVC DIGIT Multi SCAN	OFF OFF OFF 6 OFF AUTO	Delt DEL/ ERR MEA CON TWC FAIL	aT AY MODE S CURR ITACT CHK D-FOUR STOP	OFF 0000ms CurrErr HIGH ON 4W OFF]	
HIGH	LOW	7				
F1	F2					

Press the up, down, left, and right keys to select the parameters to be set

Power of resistance valuex (measuring current)² applied to the tested object, when worrying about the following issues due to measuring current, please set the measuring current to low current.

• The measured object is fusing

• The measured object heats up and the resistance value changes

• The measured object is magnetized and the inductance changes

	high cu	urrent	low current	
Range	measuring current	Power within the maximum measuremen t range	measurin g current	Power within the maximum measurem ent range
20 mΩ	1 A	22 mW		-
200 mΩ	1 A	220 mW	100 mA	2.2 mW
2000 mΩ	100 mA	22 mW	10 mA	220 µW

20 Ω	10 mA	2.2 mW	1 mA	22 µW
200 Ω	10 mA	22 mW	1 mA	220 µW
2000 Ω	1 mA	2.2 mW		-
20 kΩ	500 µA	5.5 mW		-
200 kΩ	50 µA	550 µW		-
2000 kΩ	5 µA	55 µW		-
10 MΩ	1 µA	12 µW		_

3.11 Contact Detection Settings

Detect poor contact between the tested object and the probe or the broken state of the test cable.

I/O

INT

SYS

1. Select parameter setting page

MEAS

SET

COMP PANEL

PAGE

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

Press the up, down, left, and right keys to select the parameters to be set

During the response time to measurement period, this instrument always monitors the resistance between SOUR

CE A - SENSEA and SOURCE B - SENSE B. When the resis tance value exceeds the threshold, it is judged as a conta ct error. When a contact error occurs, display CONTACT TERM.A、CONTACT TERM.B. Do not perform comparator j udgment on measured values. When displaying this error, please confirm the contact of the probe and the disconne ction of the test cable. When the measured objects are co nductive coatings, conductive rubber, etc., and the resistan ce value between SENSE-SOURCE is too high, it will alway s be in an error state and cannot be measured. Please set the contact detection function to OFF at this time.

3.12 Multi-channel Settings

The multi-channel tester can perform both single and multiple tests. The multi-channel function is turned off, and it is in single channel testing mode; If the multi-channel function is enabled, switch to the multi-channel testing mode. The settings are as follows:

1. Select parameter setting page

Press [PAGE]Button to select Parameter setting page

2. Select relevant menu items

			INT	
MEAS	SET CO	DMP PANEL]∫ sys]∫	1/0
TC SET	OFF	DeltaT	OFF	
AVERAGE	OFF	DELAY	0000ms	
AUTO HOLD	OFF	ERR MODE	CurrErr	
OVC	OFF	MEAS CURR	HIGH	
DIGIT	6	CONTACT CH	ON	
Multi	ON	TWO-FOUR	4W	
SCAN	AUTO	FAIL STOP	OFF	
AUDIBLE	FAIL			
OFF	ON			
F1	F2			

Press the up, down, left, and right keys to select the parameters to be set

Press [F1] OFF to perform single channel testing, and press

- [F2] ON to activate multi-channel testing;
- 3. [ESC] Return to the multi-channel test page

		FAST EXT					
MEAS	S SET	СОМР	PAN	EL SYS	1/0		
01	WAIT	WAIT	07	WAIT	WAIT		
02	WAIT	WAIT	08	WAIT	WAIT		
03	WAIT	WAIT	09	WAIT	WAIT		
04	WAIT	WAIT	10	WAIT	WAIT		
05	WAIT	WAIT	11	WAIT	WAIT		
06	WAIT	WAIT	12	WAIT	WAIT		
-	-		-	-	SPEED		
F1			F3	F4	F5		

4. Test completion page

	FAST EXT						
ME	AS [SET	СС	DMP	PA	NEL SYS	
01	1.00	00MΩ	PA	SS	07	1.0000MΩ	PASS
02	1.00	00MΩ	PA	SS	08	1.0000MΩ	PASS
03	1.00	00MΩ	PA	١SS	09	1.0000MΩ	PASS
04	1.00	00MΩ	PA	SS	10	1.0000MΩ	PASS
05	1.00	00MΩ	PA	SS	11	1.0000MΩ	PASS
06	1.00	00MΩ	PA	SS	12	1.0000MΩ	PASS
	-	_			-	-	SPEED
ſ	F1	F2	Ĩ	ſ	F3	F4	F5
-					· •		

Chapter 4 Comparator Settings

4.1 Comparator Function

Before using the comparator function, when exceeding the range (displaying OverRng) and when testing abnormally (displaying CONTACT TERM or -----), the judgment display of the comparator is as follows.

Measurement value display	comparator judgment display (COMP indicator light)
+OvrRng	Hi
- OvrRng	Lo
CONTACT TERM or	Extinguish (no judgment)

If the power is cut off during the setting period, the value being set becomes invalid and reverts to the previous setting value. To confirm the settings, press the [ENTER] key.

The initial setting sets the comparator function to OFF. When the function is set to OFF, even if the parameter value of the comparator is set, it is still an invalid value. Press the [COMP] key to turn the comparator on/off.

Measurement page when the comparator function is turned on

INT MEAS SET COMP PANNEL SYS I/O	ESC	PAGE
RANG 20mΩ AUTO OFF RATE SLOW2	$\sim \square \sim$	COMP
1.000000000000000000000000000000000000	aHb	LOCK
UPPER 10.0000mΩ LOWER 01.0000mΩ	×	
RATE TEMP	0.ADJ HOLD	TRG

- If the ΔT or multi gear position sorting function is set to ON, the comparator function automatically changes to OFF.
- During the use of the comparator function, the range cannot be changed, please change the range in the comparator settings page. When using automatic range, please set the comparator function to OFF.

4.1.1 Comparison Result Signal Output Method

When the comparator function is turned on, the instrument provides three types of alarm outputs.

1. Panel LED light alarm

2. Beep alarm

2.1 Select comparator setting page

Press [PAGE]Button to COMP setting page

2.2 Select relevant menu items

			INT				
MEAS	SET C	OMP PAN	EL SYS)(ı/o			
BEEP OI	FF						
MODE A	3S						
RANG 20r	nΩ						
MULTI OFF							
UPPER 20.0	UPPER 20.0000mΩ						
LOWER 02.0000mΩ							
OFF	PASS	FAIL	BEEP A	BEEP B			

3. External IO port, signal output (see Chapter 9)

4.2 Comparison Mode

4.2.1 Absolute Value Mode

1. Select comparator setting page

Press [PAGE]Button to COMP setting page

2. Select relevant menu items

3. Upper limit setting

Press the [F1] input key, use the left and right cursor keys to move the cursor to the desired position, and use the up and down cursor keys to change the value.

4. Lower limit setting

Press the [F1] input key, use the left and right cursor keys to move the cursor to the desired position, and use the up and

down cursor keys to change the value.

INT MEAS SET COMP PANEL SYS i/O BEEP OFF MODE ABS RANG 20mΩ MULTI OFF UPPER 20.0000mΩ LOWER 02.0000mΩ INPUT INPUT	Press the up, down, left, and right keys to select the parameters to be set
INPUT	

To interrupt the setting, press the [ESC] key to return to the original screen.

[Comparison of upper and lower limits]

Example:

Absolute	upper	lower	PASS	FAIL
value	limit	limit		
mode	value	value		
compariso			10Ω≤ test	test value >
n of upper	1000	100	value ≤	100Ω
and lower	10022	1012	100Ω	or test value <
limits				10Ω

4.2.2 Percentage Mode

1. Select comparator setting page

2. Select relevant menu items

3. Standard value setting

Press the [F1] input key, use the left and right cursor keys to move the cursor to the desired position, and use the up and down cursor keys to change the value.

4. Deviation value setting

Press the [F1] input key, use the left and right cursor keys to move the cursor to the desired position, and use the up and down cursor keys to change the value.

To interrupt the setting, press the [ESC] key to return to the original screen.

If the percentage mode is set, the measured value will become a deviation display (%).

Deviation=(Measurement value -1)*100% Standard value

Display Range: -99.999% ~ +99.999%

The standard value is 10 m Ω , set the allowable range relative to the standard value to \pm 1%.

4.3 Multi-position Sorting Function

Compare and determine the upper and lower limits (absolute value mode) or standard deviation (percentage mode) of up to 10 groups in a single measurement through classification measurement, and display the measurement results. All items that are not included in the BIN are judged as NG. Sorting results can also be output through the EXT I/O terminal.

4.3.1 Sorting Function Turn on Settings

1. Select parameter setting page

Attention:

- When the multi gear sorting function is ON, the comparator cannot be set to ON
- If the ΔT is set to ON, the classification measurement function will automatically change to OFF.
- When using automatic range, please set the multi gear sorting function to OFF.

4.3.2 Sorting Function Range Setting

On the multi gear sorting page, press the up and down keys to select the mode and change the range.

4.3.3 Sorting Function Upper and Lower Limit Settings

After selecting the absolute value mode and determining the range, the corresponding upper and lower limits can be set, and the units of the upper and lower limits are consistent with the range.

4.3.4 Sorting Function Standard Difference Value Settings

After selecting the percentage mode and determining the range, the corresponding standard and deviation values can be set, and the units of the standard and deviation values are consistent with the range.

aÔd

Press the up, down, left, and right keys to select the parameters to be set

Press the up, down, left, and right keys to select the parameters to be set

4.4 Multi-channel comparison settings

After the multi-channel function is turned on, you can switch

to the comparator page and set each comparator.

1. Select parameter setting page

Press [PAGE]Button to COMP setting page

2. The multi-channel setting is turned on, and the comparator

switches to the multi-channel setting page;

FAST EXT						
MEAS SET COMP PANEL SYS I/O						
No On-Off	Range	Upper	Lower			
01 ON	10MΩ	00.000MΩ	00.0000MΩ			
02 ON	10MΩ	OFF	OFF			
03 ON	10MΩ	OFF	OFF			
04 ON	10MΩ	OFF	OFF			
05 ON	10MΩ	OFF	OFF			
OFF	ON	ALL				
F1	F2	F3				

Press [F1] to turn off the comparator, [F2] to turn on the comparator, and [F3] to set all channels with one click; 3. Compare range switching

MEAS SET	COMP	FAST E	XT SYS I/O
No On-Off	Range	Upper	Lower
01 ON	10MΩ	00.0000MΩ	00.000MΩ
02 ON	10MΩ	OFF	OFF
03 ON	10MΩ	OFF	OFF
04 ON	10MΩ	OFF	OFF
05 ON	10MΩ	OFF	OFF
Panga t Pa	ngo		
Range Ra	nget	ALL	
F1	F2	F3	

Press [F1] to increase the measurement range, [F2] to decrease the measurement range, select the desired comparison range, and [F3] to set all channels with one click;

4. Compare upper limit value settings

	FAST EXT						
MEAS	MEAS SET COMP PANEL SYS 1/0						
No On-	Off Rang	e Upper	Lowe	er			
01 ON	10M	Ω 00.000	00.00 ΩΜ00	000ΜΩ			
02 ON	10M9	ΩOFF	OFF				
03 ON	10M9	ΩOFF	OFF				
04 ON	10M9	ΩOFF	OFF				
05 ON	10M9	ΩOFF	OFF				
OFF	INPUT	ALL					
E1	E2	E3					

Press [F1] to close;

Press [F2] to input, and set the value with the up, down, left, and right keys;

Press [F3] to set all paths with one click;

5. Compare lower limit value settings

FAST EXT MEAS SET COMP PANEL SYS I/O							
No	On-Off	Range	Upper	Lower			
01	ON	10MΩ	00.000MΩ	00.0000MΩ			
02	ON	10MΩ	OFF	OFF			
03	ON	10MΩ	OFF	OFF			
04	ON	10MΩ	OFF	OFF			
05	ON	10MΩ	OFF	OFF			
OF	F IN	PUT	ALL				
F		F2	F3				

Press [F1] to close;

Press [F2] to input, and set the value with the up, down, left, and right keys;

Press [F3] to set all paths with one click;

Chapter 5 Measure

5.1 Start Test

- 1. Set relevant parameters
- 2. Connect the test line correctly
- 3. Start of testing

MEAS	SET CO	OMP PAN	INT EL SYS ATE <mark>SLOW2</mark>] 1/0
CONTACT TERM.A	1.0	000	0mΩ	
RANG 1	RANG ↓	AUTO	RATE	TEMP

Trigger mode	significance		
Internal trigger	instrument internal automatic trigger		
	test		
External trigger	Trigger test through external EXT IO		
	end TRG signal		

Attention:

- You cannot restart another test before the end of the test.
- When the EOC signal of the EXT I/O port is LOW, the

test cannot be triggered.

5.2 Measuring Value Display

The following is the range of the test range. Once it exceeds the following range, it will display "OF" (range up) Test current and maximum display value of range:

Resistance	Measuring		Maximum	resolution
range	current		display value	resolution
20mΩ	1 A		22.0000mΩ	0.1μΩ
200mΩ	High	1 A	220.000mΩ	1μΩ
	Low	100 mA		
2000mΩ	High	100 mA	2200.00mΩ	10μΩ
	Low	10 mA		
20Ω	High	10 mA	22.0000Ω	0.1mΩ
	Low	1 mA		
200Ω	High	10 mA	220.000Ω	1mΩ
	Low	1 mA		
2000Ω	1 mA		2200.00Ω	10mΩ
20kΩ	500 µA		22.0000kΩ	0.1Ω
200kΩ	50 µA		220.000kΩ	1Ω
2000kΩ	5 μΑ		2200.00kΩ	10Ω
10ΜΩ	1 µA		12.0000MΩ	0.1kΩ

5.3 Automatic Protection Function

If an overvoltage is input at the measurement terminal, the internal circuit protection function of this instrument will be activated. If an overvoltage is input incorrectly, please immediately remove the test wire from the tested object. During the operation of the protection function, measurements cannot be made. To remove the protection function, please contact the DRIVE+ of the test line with the DRIVE - or reconnect the power supply.

5.4 Perform zero adjustment

Please zero in the following situations:

- When improving testing accuracy
- \rightarrow When zero adjustment is not performed due to range, including adding accuracy.
- When residual display content appears due to the influence of electromotive force
- \rightarrow Adjust the display to zero.
- When 4-terminal wiring (Kelvin connection) is difficult
- $\rightarrow\,$ Cancel the remaining resistance of the 2-terminal wiring.

Attention:

- After zeroing, if there is a change in ambient temperature or a change in the test line, please reset it again.
- Please perform zero adjustment within all ranges used. When manually measuring the range, only zero the current range; During automatic range adjustment, all ranges will be zeroed.
- When performing zero adjustment in automatic range, if the delay time is insufficient, the zero adjustment cannot be completed normally. At this point, please zero in the manual range.
- Even if the power is cut off, the zero setting value is saved internally and also saved in the panel.
 Sometimes it may not be possible to read the zero value from the panel.
- When switching the bias voltage compensation function (OVC) from ON to OFF, or from OFF to ON, the zero adjustment is released. Please zero again.
- Set the 0ADJ signal of EXT I/O to ON (short circuited to the ISO_COM terminal of the EXT I/O connector), and it can also be zeroed.
- Although the resistance of each range from -1%f.s. to 50%f.s. can be cancelled, please try to control it within the range of 1%f.s. as much as possible.

5.4.1 Perform zero adjustment

1. Short-circuit test line HT9363-C test clip type test line

HT9363-B probe type test line

Confirm that the measured value is within 1%f.s.
When the measured value is not displayed, please confirm whether the wiring of the test wire is correct

Screen when wiring is correct:

Screen when wiring is incorrect:

MEAS	SET C	OMP PAN	INT EL SYS] [I/o
RANG 20m	Ω Αυτ	O OFF RA	ATE SLOW2	25.0°C
CONTACT TERM.A				
RANG 1	RANG↓	AUTO	RATE	TEMP

3. Press the [O.ADJ] key to perform zero adjustment

MEAS	SET C	OMP PAN	INT EL SYS		ESC	ENTER	PAGE
RANG 20m	Ω Αυτ	O OFF R	ATE SLOW2	25.0°C	۸ĺ		СОМР
CONTACT TERM.A	1.0	000	OmΩ		٥f	JD	LOCK
RANG Î	RANG ↓	AUTO	RATE	TEMP	0.ADJ	HOLD	TRG

4. After performing zero adjustment

If the zero adjustment is successful, O.ADJ will be displayed in the lower right corner of the measurement screen, and then return to measurement interface. If failed, O.ADJ not displayed, return to measurement interface.

Zero adjustment failed

When zero adjustment is not possible, it may be due to the measurement value before zero adjustment exceeding \pm 1% of each range, or being in an abnormal testing state. Please make the correct wiring again and reset to zero. When the resistance value of self-made cables is high, please reduce the wiring resistance because it cannot be adjusted to zero.

Attention:

When the zero adjustment fails, the zero adjustment of the current range will be released.

5. Unzero

On the measurement page, press and hold the [O.ADJ] key to release the zero adjustment value of the current range.

Chapter 6 Save Measurement Panel

All measurement conditions can be saved, retrieved, or deleted in the form of files. Press the [PAGE] key to select the panel save interface.

After entering the interface, press the up and down keys to view the saved records, and you can also save, load, clear, rename and other operations on the current record.

6.1 Save Panel Setting

Press the up, down, left, and right keys to select the parameter to be set

F1

Use the up and down keys to browse the current settings, and press the [F1] key to save the current settings.

6.2 Retrieve Measurement Settings

Use the up and down keys to browse the current settings, and press the load key to retrieve the current settings.

6.3 Delete Measurement Settings INT 1 Press **F**³ to select clear MEAS SET COMP) PANEL SYS ı/o No Name $20 \text{m}\Omega$ RANG 01 PANEL 01 RATE FAST 02 03 2 Press **ENTER** to confirm clear PRESS ENTER TO CLEAR 04 05 06 07 тс OFF 08 09 _____ 10 _____

Use the up and down keys to browse the current settings, and use the clear key to delete the current settings.

6.4 Rename Measurement Settings

Press the up, down, left, and right keys to select the parameter to be set

Use the up and down keys to browse the current settings, and press the rename key to modify the current file name.

Chapter 7 System Settings

7.1 Button Sound Setting

When operating the instrument buttons, you can choose whether to turn on the button tone.

1. Select System Settings Page

SYS page

2. Select relevant menu items

Press [F1] to turn off the button tone, press [F2] to turn on the button tone

7.2 Self-calibration Function

In order to maintain testing accuracy, the self-calibration function compensates for the bias voltage and gain drift inside the circuit.

1. Select parameter settings page

Press [F1] to set it to automatic. During TRG standby, perform self-calibration every 1 second for 5ms. During the 5ms self-calibration period, if a TRG signal is received, the self-calibration will be stopped and measurement will begin after 0.5ms. If there is a deviation in the measurement time, please set it to manual.

Press [F2] to set it to manual, with a calibration time of approximately 400ms. It can be executed at any time sequence and cannot be automatically executed at any time sequence other than the predetermined one. When set to manual mode, if the temperature of the operating environment changes by more than 2 °C, please be sure to perform self-calibration (accuracy cannot be guaranteed if not performed). When the temperature change in the operating environment is below 2 °C, please perform self-calibration within 30 minute intervals.

7.3 Power Frequency Setting

There are three power modes, [50Hz]/[60Hz]/[automatic]. The correct setting of the power frequency can effectively filter out the noise caused by the power frequency. If the power frequency is set incorrectly, it may lead to unstable measurement.

Please select the [Auto] option when unsure of the current power supply frequency. After selecting the [Auto] option, it must be restarted before it can take effect.

1. Select System Settings Page

2. Select relevant menu items

MEAS KEY BEEP CALIB POW FREQ RADIO COM MODE BAUD RATE	SET CO ON AUTO 50H2 OFF RS232 9600	MAA J AW	INT EL SYS)	Press the up and down keys to select the parameter to be set
AUTO	50Hz	60Hz			
F1	F2	F3			

Attention:

When the power frequency is in [automatic] mode, sometimes the automatic capture of the power frequency may fail due to environmental noise, resulting in unstable measurement. In this case, it is recommended to manually select the power frequency instead.

7.4 Radio Mode Setting

Press [F1] to close, press [F2] to open.

INT MEAS SET COMP PANEL SYS I/O KEY BEEP ON CALIB AUTO POW FREQ 50HZ RADIO OFF COM MODE RS232 BAUD RATE 9600	Press the up and down keys to select the parameter to be set
OFF ON F1 F2	

7.5 Communication Mode

The communication mode is divided into RS232 and LAN (Ethernet protocol uses TCP protocol), both of which use SCPI protocol format. The communication instructions refer to the instruction set in the CD.

It is prohibited to connect the communication port with the testing port, otherwise it may damage the instrument.

7.5.1 RS232

RS232 adopts 3-wire communication mode

Interfaces and cables

RS232/485 interface

RS232 Connection method

	Pin No.	.	Pin No.	
	1			1
TxD	2		RxD	2
RxD	3		TxD	3
	4			4
GND	5		GND	5
	6			6
	7			7
	8			8
	9			9

instrument

computer

RS232 settings

1. Select System Settings Page

MEAS	SET	COMP	PANEL	SYS	1/0
------	-----	------	-------	-----	-----

Press [PAGE]Button to SYS page

2. Select relevant menu items

3. Select communication Baud

MEAS KEY BEEP CALIB POW FREQ RADIO COM MODE BAUD RATE	SET CC ON AUTO 50Hz OFF R5232 9600	OMP PAN	EL SYS) / / 0	Press the up and down keys to select the parameter		
9600	19200	38400	57600	115200	to be set		
F1	F2	F3	F4	F5			
7.5.2	7.5.2 LAN Communication Protocol						

LAN communication adopts TCP protocol communication

Interfaces and cables

The Ethernet interface adopts a standard RJ45 port, and the cable adopts a Category 5 or higher network cable.

Connection method

1. Instrument and computer connection

When connecting the instrument to the computer, the network cable adopts a crossover cable.

The A-terminal method adopts the 568B standard, while the B-terminal method adopts the 568A standard.

Orang		Gree		Plue		Brow	
Orang	Orange	n	Blu	Whit	Gree	n	Brow
e White	Orange	Whit	е		n	Whit	n
vviiite		е		U		е	

2. Instrument and router connection

When connecting the instrument to the router, the network cable is connected directly.

Both ends adopt 568B standard:

Orang		Gree		Rhuo		Brow	
Orang	Orange	n	Blu	Whit	Gree	n	Brow
e White	Orange	Whit	е	vviiit	n	Whit	n
white		е		e		е	

Setting

1. Select System Settings Page

SYS page

2. Select TCP communication mode

3. Set communication address

INT MEAS SET COMP PANEL SYS I/O KEY BEEP ON CALIB AUTO POW FREQ 50Hz RADIO OFF COM MODE TCP IP ADDR 192.168.002.100 PORT 502 INPUT	Press the up, down, left, and right keys to set the numerical value
F1	

7.6 USB interface

The front panel of this instrument is equipped with a USB interface, which is used for HOST function. After inserting a USB drive, it is used for upgrading programs and saving data.

Chapter 8 EXT I/O for external control

The EXT I/O terminal on the rear panel of the instrument supports external control, provides output for testing and comparison judgment signals, and accepts input TRG signals. All signals use Optical coupler. Through instrument panel settings, all input/output signals can be configured to (NPN) or (PNP) levels. Understanding the internal circuit structure and safety precautions is beneficial for better connecting control systems.

1. Select I/O page

2. Select relevant menu items

MEAS SET COMP PANEL SYS I/O	\sim
TRG SOURCE INT TRG EDGE ON-OFF OUT MODE NPN EOC MODE HOLD	aAd
JUDGE MODE JUDGE I/O TEST EXEC	Press the up and down keys to select the parameter to be set
F1 F2	

3. Press [F2] to select EXT

8.2 Trigger Level Setting

1. Select I/O page

8.3 Level Mode Setting

1. Select I/O page

Select the level mode, press [F1] to set it to NPN, and press
[F2] to set it to PNP

				EXT		
MEAS	SET C	omp) pa	NEL	SYS]∫ ı/o	
TRG SOURC TRG EDGE OUT MODE EOC MODE JUDGE MOI I/O TEST	E EXT ON-OFF NPN HOLD DE JUDGE EXEC					
NPN	PNP					
F1	F2					

D D Press the up and down

Press the up and down keys to select the parameter to be set

8.3.1 NPN Wiring Method

8.3.2 PNP Wiring Method

8.4 EOC Mode Setting

1. Select I/O page

2. Select relevant menu items

MEAS SET COMP PANEL	EXT SYS	1/0
TRG SOURCE EXT TRG EDGE ON-OFF		
OUT MODE NPN EOC MODE HOLD		
JUDGE MODE JUDGE I/O TEST EXEC		
HOLD PULSE		
F1 F2		

aÔd

Press the up and down keys to select the parameter to be set

3. Press [F2] to select a pulse

4. Press [F1] to enter the time

aÔd

Press the up and down keys to select the parameter to be set

8.5 Output Mode Setting

The output signal includes judgment mode and BCD mode. When using and not using a multiplexer, the output signals of the judgment mode are different. The BCD mode combines other functions through high and low bits (and range information).

1. Select I/O page

2. Select relevant menu items

Terminal function in judgment mode

Needle	Function
9	ISO_COM
10	ERR
11	HI
12	LO
13	BINO
14	BIN2
15	BIN4
16	BIN6
17	BIN8
18	OUT0
19	OUT2
28	EOC
29	INDEX
30	IN
31	ОВ
32	BIN1
33	BIN3
34	BIN5
35	BIN7
36	BIN9
37	OUT1

Terminal function in BCD mode

Nee	BCD_LOW				
dle	OFF	ON			
9	ISO_	СОМ			
10	EF	R			
11	HI	LO			
12	BCD4-1	RNG_OUT1			
13	BCD4-3	RNG_OUT3			
14	BCD5-1	BCD1-1			
15	BCD5-3	BCD1-3			
16	BCD6-1	BCD2-1			
17	BCD6-3	BCD2-3			
18	BCD7-1	BCD3-1			
19	BCD7-3	BCD3-3			
28	EC	DC			
29	BCD4-0	RNG_OUT0			
30	I	N			
31	BCD4-2	RNG_OUT2			
32	BCD5-0	BCD1-0			
33	BCD5-0	BCD1-2			
34	BCD6-0	BCD2-0			
35	BCD6-2	BCD2-2			
36	BCD7-0	BCD3-0			
37	BCD7-2	BCD7-2 BCD3-2			

8.6 Port Signal Details

8.6.1 Port and Signal Description

8.6.2 Port Diagram

(Instrument end)

DIN	Signal	Eunction	1/0	Logical
PIN	Signal	Function	1/0	ation
1	TRG	External trigger	I	edge
2	BCD_LOW	BCD low byte output	I	level
3	INTERLOCK	Key lock	I	level
4		Panel selection, channel	1	level
		designation	•	level
5	LOAD2	Panel selection, channel	I	level
		designation		
6	ISO_VDD			
7	ISO_GND			
8	Not used			
9	ERR	Abnormal test	0	level
10	HI	Comparator judgment	0	level
11	LOW	Comparator judgment	0	level
12	BIN0	Sort P0 gear	0	level
13	BIN2	Sort P2 gear	0	level
14	BIN4	Sort P4 gear	0	level
15	BIN6	Sort P6 gear	0	level
16	BIN8	Sort P8 gear	0	level
17	OUT0	Universal output	0	level
18	OUT2	Universal output	0	level
19	0ADJ	Zero	I	edge
20	CAL	Perform self-calibration	Ι	edge
21	IN1	Universal input	I	edge
22 10454		Panel selection, channel		
22	LUADT	designation	Ι	level
		Panel selection, channel		lovol
23		designation	1	ievei
		Panel selection, channel		
24		designation	I	IEVEI

25	IOS_GND			
26	Not used			
27	EOC	End of measurement	0	level
28		End of simulation	0	lovol
20	INDEX	measurement	0	
29	IN	Comparator judgment	0	level
30	OB	Sort NG gear	0	level
31	BIN1	Sort P1 gear	0	level
32	BIN3	Sort P3 gear	0	level
33	BIN5	Sort P5 gear	0	level
34	BIN7	Sort P7 gear	0	level
35	BIN9	Sort P9 gear O I		level
36	OUT1	Universal output	0	level

8.6.3 Port Signal Connection Method

Electrical performance parameters

		Optical coupler insulation		
	input format	voltage free contact input		
		(Corresponding to current		
input		injection/pulling output)		
signal		residual		
	Input ON	voltage 1 V (input ON current 4		
		mA (reference value))		
		OPEN (cut-off current		
Output	Input OFF	below 100 A)		
signal	Outrout forms	Optical coupler insulation drain		
	Output form	electrode open circuit output (no		

		polarity)		
	Maximum	DC30 VMAX		
load voltage				
	Maximum	50 mA/ch		
	output current			
	Residual	Below 1 V (load current 50 mA)		
	voltage	/ below 0.5 V (load current 10 mA)		
	Output	correspond to reverse output :		
	voltago	$5.0 \text{ V} \pm 10\%$ 、 correspond source		
	voltage	output: -5.0 V ± 10%		
	Maximum			
Built in	output	100 mA		
insulated	current			
power		Insulation with protective		
supply	Insulation	grounding potential and		
		measuring circuit		
	Insulation	Voltage to ground		
	rating	below DC50 V、AC33 Vrms、 AC46.7 Vpk		

8.6.4 Input Circuit Connection

8.6.5 Output circuit connection

8.7 Timing Diagram

The level of each signal represents the ON/OFF state of the contact, and the set value of the pull-in current (PNP) is the same as the voltage level of the EXT I/O terminal. The voltage level High and Low in the current injection (NPN) setting are opposite.

8.7.1 Timing diagram when triggered externally

(1) External trigger [EXT] setting (EOM output HOLD) When OVC is OFF

Judgment result /BCD		sult /BCD				
ΗI、	IN,	LO、	ERR、	BCDm-n、	RNG OUT0 ~ 3	

When OVC is ON

:

Judgmentresult /BCDHI、 IN、 LO、 ERR、 BCDm-n、 RNG_OUT0 ~ 3

(2) External trigger [EXT] setting (EOM output PULSE) At the end of the measurement, the EOM signal becomes ON, and if it passes through the time set to EOM pulse width (t5), it returns to OFF.

Explanation of each time in the timing diagram

Proj	Content	Time	Remarks
ect			
t0	trigger pulse ON	abovo 0,1 ms	can select ON/OFF
	time	above 0.1 ms	edge
t1	trigger pulse OFF	abovo 1 ma	
	time	above This	
t2	delay	0 ~ 100 ms	according to settings
t3	reading processing	integration time+	
	time	internal waiting time	
			Delay when
+4		0.2 mg	statistical calculation
τ4	operation time	0.5 ms	and storage
			functions are ON
t5	EOM pulse width	1 ~ 100 ms	according to setting

8.7.2 Read process when triggered externally

The following is the process of obtaining measurement values from the start of measurement when using external triggering.

After determining the judgment results (HI, IN, LOW, ER, GD, NG), this instrument immediately outputs an EOC signal. When the response of the controller input circuit is slow, it takes a waiting time from detecting the ON of the EOC signal to reading the judgment result.

8.8 Timing Diagram External Control Confirmation

The level of each signal represents the ON/OFF state of the contact, and the set value of the pull-in current (PNP) is the same as the voltage level of the EXT I/O terminal. The voltage level High and Low in the current injection (NPN) setting are opposite.

1. Select I/O page

3. Select I/O test page

MEAS	SET	CON	1P PA	NEL	INT SYS	1/0
I/O TEST HI OFF BIN4	LO OFF BIN5	IN OFF BIN6	BINO OFF BIN7	BIN1 OFF BIN8	BIN2 OFF BIN9	BIN3 OFF OB
OFF TRG	OFF	OFF LOAD0	OFF LOAD1	OFF LOAD2	LOAD3	OFF LOAD4
OFF	ON F2	2				

Press the up, down, left, and right keys to select the parameter to be set

Output signal, operable signal (OFF: close output, ON: open output)

Input signal, display the status of the signal (ON: reverse display, OFF: normal display)

4. Exit the I/O test page

I/O TEST HI LO IN BIN0 BIN1 BIN2 BIN3 OFF OFF OFF OFF OFF OFF OFF BIN4 BIN5 BIN6 BIN7 BIN8 BIN9 OB
HI LO IN BINO BIN1 BIN2 BIN3 OFF OFF OFF OFF OFF OFF OFF BIN4 BIN5 BIN6 BIN7 BIN8 BIN9 OB
BIN4 BIN5 BIN6 BIN7 BIN8 BIN9 OB
OFF OFF OFF OFF OFF OFF
TRG BCDLOW LOAD0 LOAD1 LOAD2 LOAD3 LOAD4

Return to the I/O settings page

Chapter 9 Multi-channel test lines

9.1 Configuration of connectors and terminals

Four wire test port

NO.	Terminal name	NO.	Terminal name
1	reserve	26	D7+
2	D1+	27	D7-
3	D1-	28	S7+
4	S1+	29	S7-
5	S1-	30	D8+
6	D2+	31	D8-
7	D2-	32	S8+
8	S2+	33	S8-
9	S2-	34	D9+
10	D3+	35	D9-
11	D3-	36	S9+
12	S3+	37	S9-
13	S3-	38	D10+
14	D4+	39	D10-
15	D4-	40	S10+
16	S4+	41	S10-
17	S4-	42	D11+
18	D5+	43	D11-
19	D5-	44	S11+
20	S5+	45	S11-
----	-----	----	---------
21	S5-	46	D12+
22	D6+	47	D12-
23	D6-	48	S12+
24	S6+	49	S12-
25	S6-	50	reserve

9.2 Definition of multi-channel test lines

Line 1

L

NO.	2	3	4	5	6	7	8	9
colo	brow	Brow	oran	Oran	gr	Green	bl	Blue
r	n	n	ge	ge	ee	white	ue	whit
		white		white	n			е
func	D+	D-	S+	S-	D	D-	S+	S-
tion					+			

Line 2

NO.	10	11	12	13	14	15	16	17
color	bro	Bro	oran	Oran	gree	Gree	blu	Blu
	wn	wn	ge	ge	n	n	е	е
		whit		white		whit		whit
		е				е		е
functi	D+	D-	S+	S-	D+	D-	S+	S-
on								

Line 3

NO.	18	19	20	21	22	23	24	25
color	bro	Bro	oran	Oran	gree	Gree	blu	Blu
	wn	wn	ge	ge	n	n	е	е
		whit		white		whit		whit

		е				е		е
functi	D+	D-	S+	S-	D+	D-	S+	S-
on								

Line 4

NO.	26	27	28	29	30	31	32	33
color	bro	Bro	oran	Oran	gree	Gree	blu	Blu
	wn	wn	ge	ge	n	n	е	е
		whit		white		whit		whit
		е				е		е
functi	D+	D-	S+	S-	D+	D-	S+	S-
on								

Line 5

NO.	34	35	36	37	38	39	40	41
color	bro	Bro	oran	Oran	gree	Gree	blu	Blu
	wn	wn	ge	ge	n	n	е	е
		whit		white		whit		whit
		е				е		е
functi	D+	D-	S+	S-	D+	D-	S+	S-
on								

Line 6

NO.	42	43	44	45	46	47	48	49
color	bro	Bro	oran	Oran	gree	Gree	blu	Blu
	wn	wn	ge	ge	n	n	е	е
		whit		white		whit		whit
		е				е		е
functi	D+	D-	S+	S-	D+	D-	S+	S-
on								

Chapter 10 Parameter

10.1 General Parameters

HT3542				
Test parameters	DC resistance			
Test Range	Range $0.1\mu\Omega \sim 10~M\Omega$, 10 ranges			
Measuring				
Current				
	Fast speed (2.2ms); medium speed (50Hz: 21ms,			
Test Speed	60Hz: 18ms);			
	Slow speed 1 (102ms); slow speed 2 (202ms)			
OVC	Thermoelectric culling function			
Input Terminal	Banana plug			
Operation Key	Rubber key			
Display	3.5-inch TFT			
Basic Accuracy	±0.01%rdg.±0.001%f.s.			
Precision				
Guarantee	<23°C±5°C, 80RH			
Humidity Range				
Precision	1			
Guarantee Period	i year			
Power Supply	AC 100 ~ 240 V, 50/60 Hz, rated power: 40 VA			
	325mm(length) x 215mm (width) x 96 mm			
Size and Weight	(height)			
	4Кд			

10.2 Accuracy

LP: OFF

		Test accuracy (%rdg.+%f.s.)					
	Maximum						
Pango	measurem	E. at		-11	-12		
капуе	ent range	Fast	meaium	SIOWI	siow2		
	5						
20 m O	22.000mO	0.060+0.050	0.060+0	0.020	0.060+0.020		
20 mΩ	22.0000mt2	(0.060+0.015)	(0.060+0	0.002)	(0.060+0.001)		
		0.060+0.0100	0.060+0	0.010	0.060+0.010		
	220.0000	(0.060+0.003)	(0.060+0	0.001)	(0.060+0.001)		
200mΩ	220.000mΩ	0.014+0.050	0.014+0	.020	0.014+0.020		
		(0.014+0.015)	(0.014+0	.002)	(0.014+0.001)		
		0.012+0.010		08			
	2200.00m0	(0.012+0.003)	(0.012+0.001)				
2000mΩ	2200.00002	0.008+0.050	0.008+0.020				
		(0.008+0.015)	(0.008+0.002)				
		0.008+0.010		0.008+0.0	08		
		(0.008+0.003)	(0.008+0.0	01)		
20 Ω	22.0000 Ω	0.008+0.050		0.008+0.0	20		
		(0.008+0.015)	(0.008+0.0	02)		
		0.007+0.005	0.007+0.002	0.0	07+0.001		
200 0	220.000.0	(0.007+0.005)	(0.007+0.001	(0.0	07+0.001)		
200 11	220.000 12	0.008+0.010		0.008+0.0	10		
		(0.008+0.003)	(0.008+0.0	01)		
2000 0	2200.00.0	0.007+0.005	0.006+0.002	0.0	06+0.001		
2000 32	2200.00 12	(0.007+0.005)	(0.006+0.001	(0.0	06+0.001)		
20 kΩ	22.000 0kΩ	0.008+0.005	0.007+0.002	0.0	07+0.001		
200 kΩ	220.000kΩ	0.008+0.005	0.007+0.002	0.0	07+0.001		
2000kΩ	2200.00 kΩ	0.015+0.005	0.008+0.002	0.0	08+0.001		
10 MΩ	12.000 0MΩ	0.030+0.005	0.030+0.002	0.0	30+0.001		